Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Am J Trop Med Hyg ; 110(3): 518-528, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38320317

RESUMO

Current modeling practices for environmental and sociological modulated infectious diseases remain inadequate to forecast the risk of outbreak(s) in human populations, partly due to a lack of integration of disciplinary knowledge, limited availability of disease surveillance datasets, and overreliance on compartmental epidemiological modeling methods. Harvesting data knowledge from virus transmission (aerosols) and detection (wastewater) of SARS-CoV-2, a heuristic score-based environmental predictive intelligence system was developed that calculates the risk of COVID-19 in the human population. Seasonal validation of the algorithm was uniquely associated with wastewater surveillance of the virus, providing a lead time of 7-14 days before a county-level outbreak. Using county-scale disease prevalence data from the United States, the algorithm could predict COVID-19 risk with an overall accuracy ranging between 81% and 98%. Similarly, using wastewater surveillance data from Illinois and Maryland, the SARS-CoV-2 detection rate was greater than 80% for 75% of the locations during the same time the risk was predicted to be high. Results suggest the importance of a holistic approach across disciplinary boundaries that can potentially allow anticipatory decision-making policies of saving lives and maximizing the use of available capacity and resources.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Estações do Ano , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias , Inteligência
2.
mBio ; : e0052923, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37962395

RESUMO

Climate change raises an old disease to a new level of public health threat. The causative agent, Vibrio cholerae, native to aquatic ecosystems, is influenced by climate and weather processes. The risk of cholera is elevated in vulnerable populations lacking access to safe water and sanitation infrastructure. Predictive intelligence, employing mathematical algorithms that integrate earth observations and heuristics derived from microbiological, sociological, and weather data, can provide anticipatory decision-making capabilities to reduce the burden of cholera and save human lives. An example offered here is the recent outbreak of cholera in Malawi, predicted in advance by such algorithms.

3.
mBio ; : e0147623, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37931127

RESUMO

Changing climatic conditions influence parameters associated with the growth of pathogenic Vibrio spp. in the environment and, hence, are linked to increased incidence of vibriosis. Between 1992 and 2022, a long-term increase in Vibrio spp. infections was reported in Florida, USA. Furthermore, a spike in Vibrio spp. infections was reported post Hurricane Ian, a category five storm that made landfall in Florida on 28 September 2022. During October 2022, water and oyster samples were collected from three stations in Lee County in an area significantly impacted by Ian. Vibrio spp. were isolated, and whole-genome sequencing and phylogenetic analysis were done, with a focus on Vibrio parahaemolyticus and Vibrio vulnificus to provide genetic insight into pathogenic strains circulating in the environment. Metagenomic analysis of water samples provided insight with respect to human health-related factors, notably the detection of approximately 12 pathogenic Vibrio spp., virulence and antibiotic resistance genes, and mobile genetic elements, including the SXT/R391 family of integrative conjugative elements. Environmental parameters were monitored as part of a long-term time series analysis done using satellite remote sensing. In addition to anomalous rainfall and storm surge, changes in sea surface temperature and chlorophyll concentration during and after Ian favored the growth of Vibrio spp. In conclusion, genetic analysis coupled with environmental data and remote sensing provides useful public health information and, hence, constitute a valuable tool to proactively detect and characterize environmental pathogens, notably vibrios. These data can aid the development of early warning systems by yielding a larger source of information for public health during climate change. Evidence suggests warming temperatures are associated with the spread of potentially pathogenic Vibrio spp. and the emergence of human disease globally. Following Hurricane Ian, the State of Florida reported a sharp increase in the number of reported Vibrio spp. infections and deaths. Hence, monitoring of pathogens, including vibrios, and environmental parameters influencing their occurrence is critical to public health. Here, DNA sequencing was used to investigate the genomic diversity of Vibrio parahaemolyticus and Vibrio vulnificus, both potential human pathogens, in Florida coastal waters post Hurricane Ian, in October 2022. Additionally, the microbial community of water samples was profiled to detect the presence of Vibrio spp. and other microorganisms (bacteria, fungi, protists, and viruses) present in the samples. Long-term environmental data analysis showed changes in environmental parameters during and after Ian were optimal for the growth of Vibrio spp. and related pathogens. Collectively, results will be used to develop predictive risk models during climate change.

4.
bioRxiv ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37808627

RESUMO

Members of the genus Vibrio are ecologically significant bacteria native to aquatic ecosystems globally, and a few can cause diseases in humans. Vibrio-related illnesses have increased in recent years, primarily attributed to changing environmental conditions. Therefore, understanding the role of environmental factors in the occurrence and growth of pathogenic strains is crucial for public health. Water, oyster, and sediment samples were collected between 2009 and 2012 from Chester River and Tangier Sound sites in Chesapeake Bay, Maryland, USA, to investigate the relationship between water temperature, salinity, and chlorophyll with the incidence and distribution of Vibrio parahaemolyticus (VP) and Vibrio vulnificus (VV). Odds ratio analysis was used to determine association between the likelihood of VP and VV presence and these environmental variables. Results suggested that water temperature threshold of 20°C or higher was associated with an increased risk, favoring the incidence of Vibrio spp. A significant difference in salinity was observed between the two sampling sites, with distinct ranges showing high odds ratio for Vibrio incidence, especially in water and sediment, emphasizing the impact of salinity on VP and VV incidence and distribution. Notably, salinity between 9-20 PPT consistently favored the Vibrio incidence across all samples. Relationship between chlorophyll concentrations and VP and VV incidence varied depending on sample type. However, chlorophyll range of 0-10 µg/L was identified as critical in oyster samples for both vibrios. Analysis of odds ratios for water samples demonstrated consistent outcomes across all environmental parameters, indicating water samples offer a more reliable indicator of Vibrio spp. incidence.

5.
Appl Environ Microbiol ; 89(6): e0030723, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37222620

RESUMO

Incidence of vibriosis is rising globally, with evidence that changing climatic conditions are influencing environmental factors that enhance growth of pathogenic Vibrio spp. in aquatic ecosystems. To determine the impact of environmental factors on occurrence of pathogenic Vibrio spp., samples were collected in the Chesapeake Bay, Maryland, during 2009 to 2012 and 2019 to 2022. Genetic markers for Vibrio vulnificus (vvhA) and Vibrio parahaemolyticus (tlh, tdh, and trh) were enumerated by direct plating and DNA colony hybridization. Results confirmed seasonality and environmental parameters as predictors. Water temperature showed a linear correlation with vvhA and tlh, and two critical thresholds were observed, an initial increase in detectable numbers (>15°C) and a second increase when maximum counts were recorded (>25°C). Temperature and pathogenic V. parahaemolyticus (tdh and trh) were not strongly correlated; however, the evidence showed that these organisms persist in oyster and sediment at colder temperatures. Salinity (10 to 15 ppt), total chlorophyll a (5 to 25 µg/L), dissolved oxygen (5 to 10 mg/L), and pH (8) were associated with increased abundance of vvhA and tlh. Importantly, a long-term increase in Vibrio spp. numbers was observed in water samples between the two collection periods, specifically at Tangier Sound (lower bay), with the evidence suggesting an extended seasonality for these bacteria in the area. Notably, tlh showed a mean positive increase that was ca. 3-fold overall, with the most significant increase observed during the fall. In conclusion, vibriosis continues to be a risk in the Chesapeake Bay region. A predictive intelligence system to assist decision makers, with respect to climate and human health, is warranted. IMPORTANCE The genus Vibrio includes pathogenic species that are naturally occurring in marine and estuarine environments globally. Routine monitoring for Vibrio species and environmental parameters influencing their incidence is critical to provide a warning system for the public when the risk of infection is high. In this study, occurrence of Vibrio parahaemolyticus and Vibrio vulnificus, both potential human pathogens, in Chesapeake Bay water, oysters, and sediment samples collected over a 13-year period was analyzed. The results provide a confirmation of environmental predictors for these bacteria, notably temperature, salinity, and total chlorophyll a, and their seasonality of occurrence. New findings refine environmental parameter thresholds of culturable Vibrio species and document a long-term increase in Vibrio populations in the Chesapeake Bay. This study provides a valuable foundation for development of predicative risk intelligence models for Vibrio incidence during climate change.


Assuntos
Ostreidae , Vibrioses , Vibrio parahaemolyticus , Vibrio vulnificus , Animais , Humanos , Vibrio parahaemolyticus/genética , Vibrio vulnificus/genética , Clorofila A , Ecossistema , Ostreidae/microbiologia , Vibrioses/epidemiologia , Água
6.
Nat Commun ; 14(1): 1154, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859426

RESUMO

In 2022, one of its worst cholera outbreaks began in Bangladesh and the icddr,b Dhaka hospital treated more than 1300 patients and ca. 42,000 diarrheal cases from March-1 to April-10, 20221. Here, we present genomic attributes of V. cholerae O1 responsible for the 2022 Dhaka outbreak and 960 7th pandemic El Tor (7PET) strains from 88 countries. Results show strains isolated during the Dhaka outbreak cluster with 7PET wave-3 global clade strains, but comprise subclade BD-1.2, for which the most recent common ancestor appears to be that responsible for recent endemic cholera in India. BD-1.2 strains are present in Bangladesh since 2016, but not establishing dominance over BD-2 lineage strains2 until 2018 and predominantly associated with endemic cholera. In conclusion, the recent shift in lineage and genetic attributes, including serotype switching of BD-1.2 from Ogawa to Inaba, may explain the increasing number of cholera cases in Bangladesh.


Assuntos
Cólera , Vibrio cholerae O1 , Humanos , Bangladesh , Genômica , Surtos de Doenças , Fatores de Transcrição
7.
Sci Rep ; 12(1): 16967, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36217008

RESUMO

Periodical cicadas (Hemiptera: Magicicada) have coevolved with obligate bacteriome-inhabiting microbial symbionts, yet little is known about gut microbial symbiont composition or differences in composition among allochronic Magicicada broods (year classes) which emerge parapatrically or allopatrically in the eastern United States. Here, 16S rRNA amplicon sequencing was performed to determine gut bacterial community profiles of three periodical broods, including II (Connecticut and Virginia, 2013), VI (North Carolina, 2017), and X (Maryland, 2021, and an early emerging nymph collected in Ohio, 2017). Results showed similarities among all nymphal gut microbiomes and between morphologically distinct 17-year Magicicada, namely Magicicada septendecim (Broods II and VI) and 17-year Magicicada cassini (Brood X) providing evidence of a core microbiome, distinct from the microbiome of burrow soil inhabited by the nymphs. Generally, phyla Bacteroidetes [Bacteroidota] (> 50% relative abundance), Actinobacteria [Actinomycetota], or Proteobacteria [Pseudomonadota] represented the core. Acidobacteria and genera Cupriavidus, Mesorhizobium, and Delftia were prevalent in nymphs but less frequent in adults. The primary obligate endosymbiont, Sulcia (Bacteroidetes), was dominant amongst core genera detected. Chryseobacterium were common in Broods VI and X. Chitinophaga, Arthrobacter, and Renibacterium were common in Brood X, and Pedobacter were common to nymphs of Broods II and VI. Further taxonomic assignment of unclassified Alphaproteobacteria sequencing reads allowed for detection of multiple copies of the Hodgkinia 16S rRNA gene, distinguishable as separate operational taxonomic units present simultaneously. As major emergences of the broods examined here occur at 17-year intervals, this study will provide a valuable comparative baseline in this era of a changing climate.


Assuntos
Microbioma Gastrointestinal , Hemípteros , Animais , Bactérias/genética , Microbioma Gastrointestinal/genética , Hemípteros/genética , RNA Ribossômico 16S/genética , Solo , Estados Unidos
8.
Geohealth ; 6(9): e2022GH000681, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36185317

RESUMO

Cholera, an ancient waterborne diarrheal disease, remains a threat to public health, especially when climate/weather processes, microbiological parameters, and sociological determinants intersect with population vulnerabilities of loss of access to safe drinking water and sanitation infrastructure. The ongoing war in Ukraine has either damaged or severely crippled civil infrastructure, following which the human population is at risk of health disasters. This editorial highlights a perspective on using predictive intelligence to combat potential (and perhaps impending) cholera outbreaks in various regions of Ukraine. Reliable and judicious use of existing earth observations inspired mathematical algorithms integrating heuristic understanding of microbiological, sociological, and weather parameters have the potential to save or reduce the disease burden.

9.
Infect Genet Evol ; 105: 105363, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36087684

RESUMO

Vibrio cholerae O1 El Tor, causative agent of the ongoing seventh cholera pandemic, is native to the aquatic environment of the Ganges Delta, Bay of Bengal (GDBB). Recent studies traced pandemic strains to the GDBB and proposed global spread of cholera had occurred via intercontinental transmission. In the research presented here, NotI-digested genomic DNA extracted from V. cholerae O1 clinical and environmental strains isolated in Bangladesh during 20042014 was analyzed by pulsed-field gel electrophoresis (PFGE). Results of cluster analysis showed 94.67% of the V. cholerae strains belonged to clade A and included the majority of clinical strains of spatio-temporal origin and representing different cholera endemic foci. The rest of the strains were estuarine, all environmental strains from Mathbaria, Bangladesh, and occurred as singletons, clustered in clades B and C, or in the small clades D and E. Cluster analysis of the Bangladeshi strains and including 157 El Tor strains from thirteen countries in Asia, Africa, and the Americas revealed 85% of the total set of strains belonged to clade A, indicating all were related, yet did not form an homogeneous cluster. Overall, 15% of the global strains comprised multiple small clades or segregated as singletons. Three sub-clades could be discerned within the major clade A, reflecting distinct lineages of V. cholerae O1 El Tor associated with cholera in Asia, Africa, and the Americas. The presence in Asia and the Americas of non-pandemic V. cholerae O1 El Tor populations differing by PFGE and from strains associated with cholera globally suggests different ecotypes are resident in distant geographies.


Assuntos
Cólera , Vibrio cholerae O1 , Humanos , Cólera/epidemiologia , Eletroforese em Gel de Campo Pulsado , Toxina da Cólera/genética , Bangladesh/epidemiologia
10.
mBio ; 13(4): e0059122, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35726918

RESUMO

Wastewater surveillance (WS), when coupled with advanced molecular techniques, offers near real-time monitoring of community-wide transmission of SARS-CoV-2 and allows assessing and mitigating COVID-19 outbreaks, by evaluating the total microbial assemblage in a community. Composite wastewater samples (24 h) were collected weekly from a manhole between December 2020 and November 2021 in Maryland, USA. RT-qPCR results showed concentrations of SARS-CoV-2 RNA recovered from wastewater samples reflected incidence of COVID-19 cases. When a drastic increase in COVID-19 was detected in February 2021, samples were selected for microbiome analysis (DNA metagenomics, RNA metatranscriptomics, and targeted SARS-CoV-2 sequencing). Targeted SARS-CoV-2 sequencing allowed for detection of important genetic mutations, such as spike: K417N, D614G, P681H, T716I, S982A, and D1118H, commonly associated with increased cell entry and reinfection. Microbiome analysis (DNA and RNA) provided important insight with respect to human health-related factors, including detection of pathogens and their virulence/antibiotic resistance genes. Specific microbial species comprising the wastewater microbiome correlated with incidence of SARS-CoV-2 RNA, suggesting potential association with SARS-CoV-2 infection. Climatic conditions, namely, temperature, were related to incidence of COVID-19 and detection of SARS-CoV-2 in wastewater, having been monitored as part of an environmental risk score assessment carried out in this study. In summary, the wastewater microbiome provides useful public health information, and hence, a valuable tool to proactively detect and characterize pathogenic agents circulating in a community. In effect, metagenomics of wastewater can serve as an early warning system for communicable diseases, by providing a larger source of information for health departments and public officials. IMPORTANCE Traditionally, testing for COVID-19 is done by detecting SARS-CoV-2 in samples collected from nasal swabs and/or saliva. However, SARS-CoV-2 can also be detected in feces of infected individuals. Therefore, wastewater samples can be used to test all individuals of a community contributing to the sewage collection system, i.e., the infrastructure, such as gravity pipes, manholes, tanks, lift stations, control structures, and force mains, that collects used water from residential and commercial sources and conveys the flow to a wastewater treatment plant. Here, we profile community wastewater collected from a manhole, detect presence of SARS-CoV-2, identify genetic mutations of SARS-CoV-2, and perform COVID-19 risk score assessment of the study area. Using metagenomics analysis, we also detect other microorganisms (bacteria, fungi, protists, and viruses) present in the samples. Results show that by analyzing all microorganisms present in wastewater, pathogens circulating in a community can provide an early warning for contagious diseases.


Assuntos
COVID-19 , Microbiota , COVID-19/epidemiologia , Teste para COVID-19 , Humanos , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
11.
Microbiol Spectr ; 10(2): e0039122, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35315699

RESUMO

Comparative genomic analysis of Vibrio cholerae El Tor associated with endemic cholera in Asia revealed two distinct lineages, one dominant in Bangladesh and the other in India. An in-depth whole-genome study of V. cholerae El Tor strains isolated during endemic cholera in Bangladesh (1991 to 2017) included reference genome sequence data obtained online. Core genome phylogeny established using single nucleotide polymorphisms (SNPs) showed V. cholerae El Tor strains comprised two lineages, BD-1 and BD-2, which, according to Bayesian phylodynamic analysis, originated from paraphyletic group BD-0 around 1981. BD-1 and BD-2 lineages overlapped temporally but were negatively associated as causative agents of cholera during 2004 to 2017. Genome-wide association study (GWAS) revealed 140 SNPs and 31 indels, resulting in gene alleles unique to BD-1 and BD-2. Regression analysis of root to tip distance and year of isolation indicated early BD-0 strains at the base, whereas BD-1 and BD-2 subsequently emerged and progressed by accumulating SNPs. Pangenome analysis provided evidence of gene acquisition by both BD-1 and BD-2, of which six crucial proteins of known function were predominant in BD-2. BD-1 and BD-2 diverged and have distinctively different genomic traits, namely, heterogeneity in VSP-2, VPI-1, mobile elements, toxin encoding elements, and total gene abundance. In addition, the observed phage-inducible chromosomal island-like element (PLE1), and SXT ICE elements (ICETET) in BD-2 presumably provided a fitness advantage for the lineage to outcompete BD-1 as the etiological agent of endemic cholera in Bangladesh, with implications for global cholera epidemiology. IMPORTANCE Cholera is a global disease with specific reference to the Bay of Bengal Ganges Delta where Vibrio cholerae O1 El Tor, the causative agent of the disease showed two circulating lineages, one dominant in Bangladesh and the other in India. Results of an in-depth genomic study of V. cholerae associated with endemic cholera during the past 27 years (1991 to 2017) indicate emergence and succession of the two lineages, BD-1 and BD-2, arising from a common ancestral paraphyletic group, BD-0, comprising the early strains and short-term evolution of the bacterium in Bangladesh. Among the two V. cholerae lineages, BD-2 supersedes BD-1 and is predominant in the most recent endemic cholera in Bangladesh. The BD-2 lineage contained significantly more SNPs and indels, and showed richness in gene abundance, including antimicrobial resistance genes, gene cassettes, and PLE to fight against bacteriophage infection, acquired over time. These findings have important epidemic implications on a global scale.


Assuntos
Cólera , Vibrio cholerae O1 , Bangladesh/epidemiologia , Teorema de Bayes , Cólera/epidemiologia , Cólera/microbiologia , Toxina da Cólera/genética , Toxina da Cólera/metabolismo , Estudo de Associação Genômica Ampla , Genômica/métodos , Humanos , Vibrio cholerae O1/genética
12.
Can J Microbiol ; 68(2): 103-110, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34793252

RESUMO

Vibrio cholerae, an important waterborne pathogen, is a rod-shaped bacterium that naturally exists in aquatic environments. When conditions are unfavorable for growth, the bacterium can undergo morphological and physiological changes to assume a coccoid morphology. This stage in its life cycle is referred to as viable but non-culturable (VBNC) because VBNC cells do not grow on conventional bacteriological culture media. The current study compared polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) to detect and identify VBNC V. cholerae. Because it is difficult to detect and identify VBNC V. cholerae, the results of the current study are useful in showing that LAMP is more sensitive and rapid than PCR in detecting and identifying non-culturable, coccoid forms of V. cholerae. Furthermore, the LAMP method is effective in detecting and identifying very low numbers of coccoid VBNC V. cholerae in environmental water samples, with the added benefit of being inexpensive to perform.


Assuntos
Vibrio cholerae O1 , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Reação em Cadeia da Polimerase , Vibrio cholerae O1/genética
13.
Trop Med Infect Dis ; 6(3)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34449728

RESUMO

Climate variables influence the occurrence, growth, and distribution of Vibrio cholerae in the aquatic environment. Together with socio-economic factors, these variables affect the incidence and intensity of cholera outbreaks. The current pandemic of cholera began in the 1960s, and millions of cholera cases are reported each year globally. Hence, cholera remains a significant health challenge, notably where human vulnerability intersects with changes in hydrological and environmental processes. Cholera outbreaks may be epidemic or endemic, the mode of which is governed by trigger and transmission components that control the outbreak and spread of the disease, respectively. Traditional cholera risk assessment models, namely compartmental susceptible-exposed-infected-recovered (SEIR) type models, have been used to determine the predictive spread of cholera through the fecal-oral route in human populations. However, these models often fail to capture modes of infection via indirect routes, such as pathogen movement in the environment and heterogeneities relevant to disease transmission. Conversely, other models that rely solely on variability of selected environmental factors (i.e., examine only triggers) have accomplished real-time outbreak prediction but fail to capture the transmission of cholera within impacted populations. Since the mode of cholera outbreaks can transition from epidemic to endemic, a comprehensive transmission model is needed to achieve timely and reliable prediction with respect to quantitative environmental risk. Here, we discuss progression of the trigger module associated with both epidemic and endemic cholera, in the context of the autochthonous aquatic nature of the causative agent of cholera, V. cholerae, as well as disease prediction.

14.
Environ Microbiol ; 23(12): 7314-7340, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34390611

RESUMO

Vibrio spp. thrive in warm water and moderate salinity, and they are associated with aquatic invertebrates, notably crustaceans and zooplankton. At least 12 Vibrio spp. are known to cause infection in humans, and Vibrio cholerae is well documented as the etiological agent of pandemic cholera. Pathogenic non-cholera Vibrio spp., e.g., Vibrio parahaemolyticus and Vibrio vulnificus, cause gastroenteritis, septicemia, and other extra-intestinal infections. Incidence of vibriosis is rising globally, with evidence that anthropogenic factors, primarily emissions of carbon dioxide associated with atmospheric warming and more frequent and intense heatwaves, significantly influence environmental parameters, e.g., temperature, salinity, and nutrients, all of which can enhance growth of Vibrio spp. in aquatic ecosystems. It is not possible to eliminate Vibrio spp., as they are autochthonous to the aquatic environment and many play a critical role in carbon and nitrogen cycling. Risk prediction models provide an early warning that is essential for safeguarding public health. This is especially important for regions of the world vulnerable to infrastructure instability, including lack of 'water, sanitation, and hygiene' (WASH), and a less resilient infrastructure that is vulnerable to natural calamity, e.g., hurricanes, floods, and earthquakes, and/or social disruption and civil unrest, arising from war, coups, political crisis, and economic recession. Incorporating environmental, social, and behavioural parameters into such models allows improved prediction, particularly of cholera epidemics. We have reported that damage to WASH infrastructure, coupled with elevated air temperatures and followed by above average rainfall, promotes exposure of a population to contaminated water and increases the risk of an outbreak of cholera. Interestingly, global predictive risk models successful for cholera have the potential, with modification, to predict diseases caused by other clinically relevant Vibrio spp. In the research reported here, the focus was on environmental parameters associated with incidence and distribution of clinically relevant Vibrio spp. and their role in disease transmission. In addition, molecular methods designed for detection and enumeration proved useful for predictive modelling and are described, namely in the context of prediction of environmental conditions favourable to Vibrio spp., hence human health risk.


Assuntos
Vibrioses , Vibrio , Meio Ambiente , Humanos , Incidência , Vibrio/classificação , Vibrio/patogenicidade , Vibrioses/epidemiologia , Vibrioses/transmissão
15.
Front Water ; 3: 626849, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34263162

RESUMO

Microbial contamination of recreation waters is a major concern globally, with pollutants originating from many sources, including human and other animal wastes often introduced during storm events. Fecal contamination is traditionally monitored by employing culture methods targeting fecal indicator bacteria (FIB), namely E. coli and enterococci, which provides only limited information of a few microbial taxa and no information on their sources. Host-associated qPCR and metagenomic DNA sequencing are complementary methods for FIB monitoring that can provide enhanced understanding of microbial communities and sources of fecal pollution. Whole metagenome sequencing (WMS), quantitative real-time PCR (qPCR), and culture-based FIB tests were performed in an urban watershed before and after a rainfall event to determine the feasibility and application of employing a multi-assay approach for examining microbial content of ambient source waters. Cultivated E. coli and enterococci enumeration confirmed presence of fecal contamination in all samples exceeding local single sample recreational water quality thresholds (E. coli, 410 MPN/100 mL; enterococci, 107 MPN/100 mL) following a rainfall. Test results obtained with qPCR showed concentrations of E. coli, enterococci, and human-associated genetic markers increased after rainfall by 1.52-, 1.26-, and 1.11-fold log10 copies per 100 mL, respectively. Taxonomic analysis of the surface water microbiome and detection of antibiotic resistance genes, general FIB, and human-associated microorganisms were also employed. Results showed that fecal contamination from multiple sources (human, avian, dog, and ruminant), as well as FIB, enteric microorganisms, and antibiotic resistance genes increased demonstrably after a storm event. In summary, the addition of qPCR and WMS to traditional surrogate techniques may provide enhanced characterization and improved understanding of microbial pollution sources in ambient waters.

16.
Front Public Health ; 9: 692166, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307285

RESUMO

Aeromonads are aquatic bacteria associated with frequent outbreaks of diarrhea in coastal Bangladesh, but their potential risks from environmental sources have remained largely unexplored. This study, over 2 years, examined homestead pond waters in the region for monthly dynamics and diversity of Aeromonas spp. The bacterial counts showed bi-modal annual growth peak, pre- and post-monsoon, strongly correlating (p < 0.0005) with temperature. Of 200 isolates characterized, Aeromonas veronii bv. sobria (27%) was predominant among co-existent Aeromonas schubertii (20%), Aeromonas hydrophila (17%), Aeromonas caviae (13%), and three more. PCR screening of virulence-related genes identified 15 genotypes (I to XV), however, enterotoxigenicity in animal model was observed for five genotypes, ca. 18% (nine of 50) strains, prevalent in A. veronii bv. sobria, A. hydrophila, and A. caviae. Pathogenic strains were distinguishable by possessing at least three of the major virulence genes: ascV, hlyA, ela, ast, and alt, together with accessory virulence factors. PFGE of XbaI-digested genomic DNA revealed high genetic diversity and distant lineage of potentially toxigenic clones. Therefore, along with increased global warming, Aeromonas spp. having multi-factorial virulence potential in coastal ponds that serve as drinking water sources pose a potential health risk, and underscores the need for routine monitoring.


Assuntos
Aeromonas , Lagoas , Aeromonas/genética , Animais , Bangladesh/epidemiologia , Virulência/genética , Água
17.
Microbiol Resour Announc ; 10(9)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664147

RESUMO

We report the draft genome sequences of seven Vibrio cholerae isolates from patients. Four isolates were profiled as multilocus sequence type 69, serogroup O1, a subset of seventh-pandemic El Tor clonal isolates. Presented here are genome assemblies and evidence for major pathogenicity islands, virulence factors, and antimicrobial resistance genes.

18.
Soc Sci Med ; 272: 113716, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33571944

RESUMO

As the world's longest running pandemic, cholera poses a substantial public health burden in Bangladesh, where human vulnerability intersects with climatic variability. Barriers to safe water and sanitation place the health of millions of Bangladeshis in jeopardy - especially those who have highly constrained choices in preventing and responding to cholera. In this paper we investigate demand for cholera prevention among residents in the Mirpur and Karail slum areas of urban Dhaka. Using survey data from 2023 households in two slum areas, we analyze responses from a contingent valuation questionnaire that elicited willingness to pay (WTP) for cholera vaccines across household members and under varying disease risk scenarios, finding higher valuation for cholera prevention for children and under scenarios of greater epidemic risk. We estimate the average WTP for a cholera vaccine for a child ranges from TK 134-167 (US$ 1.58-1.96). Consistently, respondents with prior knowledge of the cholera vaccine reported lower WTP valuations, providing suggestive evidence of concerns about vaccine effectiveness and preferences for cholera treatment over prevention. We supplement the contingent valuation analysis with cost of illness estimates from both our household sample as well as from administrative hospital records of over 34,000 cholera patients. We estimate that a household incurs costs of TK 801-922 (US$ 9.43-10.50) per episode of cholera that requires medical treatment. Taken together, these findings indicate higher WTP for cholera treatment compared to prevention, but increased interest in prevention under early warning system scenarios of high disease risk.


Assuntos
Vacinas contra Cólera , Cólera , Bangladesh/epidemiologia , Criança , Cólera/epidemiologia , Cólera/prevenção & controle , Características da Família , Humanos , Áreas de Pobreza
19.
Sci Rep ; 10(1): 14549, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32883963

RESUMO

Escherichia coli is a pathogen commonly encountered in clinical laboratories, and is capable of causing a variety of diseases, both within the intestinal tract (intestinal pathogenic strains) and outside (extraintestinal pathogenic E. coli, or ExPEC). It is associated with urinary tract infections (UTIs), one of the most common infectious diseases in the world. This report represents the first comparative analysis of the draft genome sequences of 11 uropathogenic E. coli (UPEC) strains isolated from two tertiary hospitals located in Dhaka and Sylhet, Bangladesh, and is focused on comparing their genomic characteristics to each other and to other available UPEC strains. Multilocus sequence typing (MLST) confirmed the strains belong to ST59, ST131, ST219, ST361, ST410, ST448 and ST4204, with one of the isolates classified as a previously undocumented ST. De novo identification of the antibiotic resistance genes blaNDM-5, blaNDM-7, blaCTX-M-15 and blaOXA-1 was determined, and phenotypic-genotypic analysis of virulence revealed significant heterogeneity within UPEC phylogroups.


Assuntos
Tipagem de Sequências Multilocus/métodos , Escherichia coli Uropatogênica/enzimologia , beta-Lactamases/metabolismo , Bangladesh , Genótipo , Fenótipo , Escherichia coli Uropatogênica/metabolismo
20.
PLoS One ; 15(4): e0231210, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32271799

RESUMO

The microbiological content of drinking water traditionally is determined by employing culture-dependent methods that are unable to detect all microorganisms, especially those that are not culturable. High-throughput sequencing now makes it possible to determine the microbiome of drinking water. Thus, the natural microbiota of water and water distribution systems can now be determined more accurately and analyzed in significantly greater detail, providing comprehensive understanding of the microbial community of drinking water applicable to public health. In this study, shotgun metagenomic analysis was performed to determine the microbiological content of drinking water and to provide a preliminary assessment of tap, drinking fountain, sparkling natural mineral, and non-mineral bottled water. Predominant bacterial species detected were members of the phyla Actinobacteria and Proteobacteria, notably the genera Alishewanella, Salmonella, and Propionibacterium in non-carbonated non-mineral bottled water, Methyloversatilis and Methylibium in sparkling natural mineral water, and Mycobacterium and Afipia in tap and drinking fountain water. Fecal indicator bacteria, i.e., Escherichia coli or enterococci, were not detected in any samples examined in this study. Bacteriophages and DNA encoding a few virulence-associated factors were detected but determined to be present only at low abundance. Antibiotic resistance markers were detected only at abundance values below our threshold of confidence. DNA of opportunistic plant and animal pathogens was identified in some samples and these included bacteria (Mycobacterium spp.), protozoa (Acanthamoeba mauritaniensis and Acanthamoeba palestinensis), and fungi (Melampsora pinitorqua and Chryosporium queenslandicum). Archaeal DNA (Candidatus Nitrosoarchaeum) was detected only in sparkling natural mineral water. This preliminary study reports the complete microbiome (bacteria, viruses, fungi, and protists) of selected types of drinking water employing whole-genome high-throughput sequencing and bioinformatics. Investigation into activity and function of the organisms detected is in progress.


Assuntos
Água Potável/microbiologia , Água Potável/parasitologia , Metagenômica , Bactérias/genética , Bactérias/patogenicidade , Contagem de Colônia Microbiana , DNA/genética , Genes Bacterianos , Microbiota/genética , Análise de Componente Principal , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA